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Introduction 

• Who am I 
• Pierre-Henri Symoneaux 

• Nokia France 

• SW architecture & development (Cloud Core for 5G Mobile Networks) 

• The topic 
• Problems of « classical » Jenkins 

• Jenkins pipelines: What, why and how 

• Based on feedback from real usage 
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Jenkins 
A quick reminder 
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What is Jenkins 
• An open-source automation server 

• Extensible with hundreds of plugins 

• Distributed – Jobs (may) run in slaves 

• Build, test, package, deploy. Automate anything 

• Mainly used in software industry 
• Continuous Integration (CI) 

• Continuous Delivery (CD) 

• DevOps 

• But not only 

© All rights reserved 

User Conference on 

Advanced Automated Testing 



© All rights reserved 

User Conference on 

Advanced Automated Testing 



© All rights reserved 

User Conference on 

Advanced Automated Testing 



Jenkins – The “old” way 
And its issues 
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Freestyle jobs – the « old » way 

• Jobs are fully defined in Jenkins web-UI 
• Input Parameters 

 

• Triggers / scheduling 

 

• Scripts 

 

• Post actions (archive artefacts, publish results & graphs) 

• More … 
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Problems 

• As a job grows, it will become 
• Hard to maintain 
• Hard to understand 
• Hard to troubleshoot 

• Hard to track changes in a job 

• Cannot review changes in a job before applying 

• What if many people perform changes at the same time 

• Cannot replay an old job 
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Multijob Pipelines – the « old » way 

• Split work into multiple jobs 

• Jobs trigger each other 

• Introduce dependencies between jobs 

• Better view on each steps 

• Problems 

• Increased complexity (hard to maintain) 

• Tracking jobs defininition changes is even harder 
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Integration with SCM 

• Most of the time, Jenkins is coupled 
with an SCM (GIT, SVN, …) 
• To store tested code 

• To store testing code 

• Both together 

• New changes in SCM can trigger a job 

• Keep track of changes in scripts 

• Changes can be reviewed before 
integration 
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GIT 
1. Submit 

change 

2. Trigger job 

3. Download and 

run changes 

4. Provide feedback 

Slave 
Slave 

Slave 

Job 

config 



Integration with SCM 
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Add SCM configuration 

Add new trigger: Poll SCM for changes 

Becomes 

Update script to use files from SCM 



Problems 

• Old version can be re-executed: But only with current job definition 

• Job definition still in Jenkins 

• What if breaking changes are introduced  
• Eg: python ./script.py --param ${…} --newparam ${…} 
• Or a new script is invoked 

  Job needs an update 

   Cannot run old versions anymore (incompatibility introduced) 

• What about execution environment ? (eg: migrate from python 2.7 to python 3.6) 
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Jenkins Blue Ocean 
A new way to write pipeline 
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What is Blue Ocean 
• A Jenkins plugin 

• Appeared in 2016 – Still in early stage 

• Rethinks user experience 
• New UI (classical UI still available) 

• New syntax: The whole job is a script 

• Pipeline graphical editor 

• Designed for pipelines 
• Sophisticated pipeline visualization 

• Pinpoint precision 

• CI / CD as code 

• Modular with shared pipeline libraries 

• First class integration with Docker 
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Pipeline as code 

• With blue ocean, Job/Pipeline 
definition is also stored in SCM 

• Pipeline can run in a 
dedicated Docker container 

• Each Git branch will 
automatically have its own job 
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1. Submit 

change 

2. Trigger job 

3. Download and 

run changes 

4. Provide feedback 

Slave 
Slave 

Slave 



Jenkins Blue Ocean 
Creating a pipeline 

© All rights reserved 



Setting up the pipeline 

• Install blueocean plugin 

• Create a new job 

• Choose type of job 

• Pipeline 

• Multibranch Pipeline 

• Let’s choose Multibranch Pipeline 
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Setting up the pipeline 

• Setup source SCM with branch discovery 

• Setup branch scanning 

 

 

• Set path to pipeline file 

• Prepare your Jenkinsfile 

• Commit and push it to SCM 
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The Jenkinsfile 

• A text file 

• Checked into SCM 

• Declarative pipeline syntax 

• DSL base on Groovy language 

• Structure documented at https://jenkins.io/doc/book/pipeline/syntax/  

• A single source of truth for the pipeline 
• Can be viewed and edited by multiple members of the project 
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Anatomy of a pipeline 
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Structure of a jenkinsfile 

• A Jenkinsfile has 6 main sections 

• Agent : Specifies where the entire pipeline 
will run 

• Options : Global options 

• Parameters: Input parameters 

• Environment : Global environment variables 

• Stages : Sequence of stage definitions 

• Post : Steps to be run at the end of pipeline 
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pipeline { 

agent {/*...*/} 

options { 

timeout(time: 1, unit: 'HOURS') 

retry(3) 

} 

parameters { 

 string(name: 'MY_JOB_PARAMETER’, 
        defaultValue: '<NONE>’, 
        description: 'Job parameter’ 
        ) 

} 

environment { 

 MY_ENV_VARIABLE = "foobar" 

} 

stages {/*...*/} 

post {/*...*/} 

} 



Agent 

• Defines where to run the pipeline 

• In any slave 

• In a slave with a given label 

• In docker container 

• Either from an image 

• Or built from a Dockerfile 

• Docker makes managing running 
environments a piece of cake 
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agent any 

 

agent { 

 label "slave-with-python2.7" 

} 

 

agent { 

docker { 

 image: "python:2.7" 

} 

} 

 

agent {dockerfile true} 



Post 

• Perform steps at end of pipeline 
• Archive artifacts 
• Publish result 
• Send an email 
• Etc … 

• Actions can be conditionned by pipeline status 
• Always 
• Changed 
• Fixed 
• Regression 
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post { 

always { 

 archive "build/*.exe" 

 deleteDir() 

} 

failure { 

 echo "Failure" 

} 

success { 

 echo "Success" 

} 

unstable { 

 echo "Unstable" 

} 

} 

• Aborted 

• Failure 

• Success 

• Unstable 

• Cleanup 

 



Stages 

• Each stage has either  
• A sequence of steps  

• A list of parallel stages 

• Can have conditional switch 

• Can have their own environment 
variables 

• Can have their own agent 
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stages { 

stage("Stage-1") { 

steps { 

echo "Welcome in stage 1" 

sh "python script.py" 

sh “./script.sh" 
}  

} 

stage('Stage-2') { 

when { 

 branch "master" 

} 

environment { 

 MY_VARIABLE = "My-Value" 

} 

parallel { 

stage("Sub-stage-1") { 

steps { 

 echo "sub stage 1" 

} 

} 

stage("Sub-stage-2") { 

steps { 

 echo "sub stage 2" 

} 

} 

} 

} 

} 



Steps 

• A step is a single action 

• Jenkins plugins come with their own 
steps 

• Run sequentially in a stage 

• Each step has its log output 

• Full list available at 
https://jenkins.io/doc/pipeline/steps/  
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steps { 

     addBadge icon: 'computer.png', text: env.NODE_NAME 

echo "Welcome in stage 1" 

sh "python script.py" 

sh "./script.sh" 

zip zipFile: "compressed.zip", dir: "." 

}  

post { 

always { 

junit "build/testresults.xml" 

checkstyle pattern: 'build/checkstyle.xml' 

cobertura coberturaReportFile: 'build/coverage.xml' 

sloccountPublish pattern: 'build/sloccount.scc' 

archive "build/*.exe,build/*.rpm" 

deleteDir() // Delete workspace 

} 

} 

https://jenkins.io/doc/pipeline/steps/
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stages { 

stage("Stage-1") { 

steps { 

echo "Welcome in stage 1" 

sh "python script.py" 

sh “./script.sh“ 
zip zipFile: "compressed.zip", dir: "." 

}  

} 

stage('Stage-2') { 

when { 

 branch "master" 

} 

environment { 

 MY_VARIABLE = "My-Value" 

} 

parallel { 

stage("Sub-stage-1") { 

steps { 

 echo "sub stage 1" 

} 

} 

stage("Sub-stage-2") { 

steps { 

 echo "sub stage 2" 

} 

} 

} 

} 

} 



Pipeline editor 

• Graphical tool 

• Edit Jenkinsfile 

• Makes it less 
difficult 

• Not as powerfull 
as text edition 
(yet?) 

© All rights reserved 

User Conference on 

Advanced Automated Testing 



Jenkins Blue Ocean 
Advanced scripting 
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The script step 

• Takes a block of groovy script 

• Mostly an “escape hatch” 

• Has access to Jenkins’ internal functions 

• Has access to Java/Groovy standard library 

• Run in a sandbox 

• Big scripts should go into a shared library 
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steps { 

script { 

for (i in 0..10) { 

 echo "${i}" 

} 

} 

} 



Example 
• Extract JIRA task ID from change’s 

comment 

• Display the link in jenkins’s job history 
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Example 
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script { 

def issues = currentBuild.changeSets 

.collect { c -> c.getItems() }.flatten() // Build a single list with all changesets 

.collect{ c -> c.getMsg() } // Transform the list into a list of commit message 

.collect { msg -> msg.split(':')[0].split(',').collect { it.trim() } } // Extract issues id from 

each commit message 

.flatten() // Merge into a single list 

.findAll { task -> task ==~ /TASK-[0-9]+/ } // Keep only valid issue names 

.unique() // Remove duplicates 

 

currentBuild.description = issues 

 .collect { "<a href=\"https://your-jira.server.com/browse/${it}\">${it}</a>" } 

    .join(", ") 

} 



Don’t repeat yourself 
Introduction to shared 
pipeline libraries 
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Shared pipeline librarie 

• Store subset of pipeline code in separate SCM repository 

• Share this code between multiple projects 

• Create custom steps 

• Avoid script sandbox restriction (a shared library is trusted) 

• Imported in Jenkinsfile by 
• EG:  
• Version can be the branch name, a tag, or a revision ID 

• Check documentation at https://jenkins.io/doc/book/pipeline/shared-
libraries/  
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@Library(“libraryname@v 
") _ 

@Library("pipeline-common-lib@2.6.1") _ 

https://jenkins.io/doc/book/pipeline/shared-libraries/
https://jenkins.io/doc/book/pipeline/shared-libraries/
https://jenkins.io/doc/book/pipeline/shared-libraries/


Why 

• Jenkinsfile gets bigger and bigger 

• Some parts are common to many projects 

• Implements complex steps 

• Import and use java libraries 

• DRY (Don’t Repeat Yourself) 
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Let’s refactor the JIRA link script 

• Create a new GIT repository which will hold the library code 

• Create a file ./vars/linkToJira.groovy with the following content 
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def call(prefix, baseUrl) { 

def issues = currentBuild.changeSets 

.collect { c -> c.getItems() }.flatten() // Build a single list with all changesets 

.collect{ c -> c.getMsg() } // Transform the list into a list of commit message 

.collect { msg -> msg.split(':')[0].split(',').collect { it.trim() } } // Extract issues id from each commit 

message 

.flatten() // Merge into a single list 

.findAll { task -> task ==~ /${prefix}-[0-9]+/ } // Keep only valid issue names 

.unique() // Remove duplicates 

currentBuild.description = issues.collect { "<a href=\"${baseUrl}/${it}\">${it}</a>" } 

 .join(", ") 

} 



Let’s refactor our 
JIRA script 

 

• Update Jenkins system config 

• Add a Global Pipeline Library 

• Name your library 

• Setup the GIT repos 
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Let’s refactor our JIRA script 

• Update the calling Jenkinsfile 

• Load the library on the first line of Jenkinsfile 

 

 

• Call the linkToJira step somewhere in a stage’s steps block 
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@Library("pipeline-common-lib@master") _ 

steps { 

linkToJira "TASK", "https://your-jira.server.com/browse" 

} 



Version your lib 

• Avoid importing the master branch of a library 

• Add versioning to it with a git tag with 

 And import it 

• Or directly import a git revision 
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@Library("pipeline-common-lib@6.2.3") _ 

git tag 6.2.3 && git push 

@Library("pipeline-common-lib@8e5ff7ffceb5e6f758def92c7ddf40a5fe87005f") _ 



Conclusion 
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Why using Blue Ocean 
• Enable good practices 

• Keep your whole pipeline in an SCM (eg: GIT) 
• Stored alongside with testing scripts and / or tested code 

• Can be passed through the code review process 

• Track changes 

• Development made easier 

• Branches can be forked easily 

• Old versions can easily be relaunched 

• Easy use of docker 

• Share and reuse common parts accross projects 

• Flexibility 

• Understandability 
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Why not 

• The learning curve 

• Blue ocean is still under heavy development 

• Groovy language 

• The cost of rewriting existing freestyle jobs 

• Still hard for now to test Jenkinsfile without having to submit it 
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QUESTIONS ? 
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Backup slides 
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Review workflow 

• Fork master branch into a new one 

• Make your changes and commit / push 
them 
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• New Job is automatically created 
and run 



Review workflow 

• You can ask for a peer to review 
your changes 

• Pull Request (Github) 

• Merge Request (Gitlab) 

• Working with Gerrit also possible 
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