
Jenkins pipelines
Presented by Pierre-Henri Symoneaux

© All rights reserved

Introduction

• Who am I
• Pierre-Henri Symoneaux

• Nokia France

• SW architecture & development (Cloud Core for 5G Mobile Networks)

• The topic
• Problems of « classical » Jenkins

• Jenkins pipelines: What, why and how

• Based on feedback from real usage

© All rights reserved

User Conference on

Advanced Automated Testing

Jenkins
A quick reminder

© All rights reserved

What is Jenkins
• An open-source automation server

• Extensible with hundreds of plugins

• Distributed – Jobs (may) run in slaves

• Build, test, package, deploy. Automate anything

• Mainly used in software industry
• Continuous Integration (CI)

• Continuous Delivery (CD)

• DevOps

• But not only

© All rights reserved

User Conference on

Advanced Automated Testing

© All rights reserved

User Conference on

Advanced Automated Testing

© All rights reserved

User Conference on

Advanced Automated Testing

Jenkins – The “old” way
And its issues

© All rights reserved

Freestyle jobs – the « old » way

• Jobs are fully defined in Jenkins web-UI
• Input Parameters

• Triggers / scheduling

• Scripts

• Post actions (archive artefacts, publish results & graphs)

• More …

© All rights reserved

User Conference on

Advanced Automated Testing

Problems

• As a job grows, it will become
• Hard to maintain
• Hard to understand
• Hard to troubleshoot

• Hard to track changes in a job

• Cannot review changes in a job before applying

• What if many people perform changes at the same time

• Cannot replay an old job

© All rights reserved

User Conference on

Advanced Automated Testing

Multijob Pipelines – the « old » way

• Split work into multiple jobs

• Jobs trigger each other

• Introduce dependencies between jobs

• Better view on each steps

• Problems

• Increased complexity (hard to maintain)

• Tracking jobs defininition changes is even harder

© All rights reserved

User Conference on

Advanced Automated Testing

Integration with SCM

• Most of the time, Jenkins is coupled
with an SCM (GIT, SVN, …)
• To store tested code

• To store testing code

• Both together

• New changes in SCM can trigger a job

• Keep track of changes in scripts

• Changes can be reviewed before
integration

© All rights reserved

User Conference on

Advanced Automated Testing

Jenkins

GIT
1. Submit

change

2. Trigger job

3. Download and

run changes

4. Provide feedback

Slave
Slave

Slave

Job

config

Integration with SCM

© All rights reserved

User Conference on

Advanced Automated Testing

Add SCM configuration

Add new trigger: Poll SCM for changes

Becomes

Update script to use files from SCM

Problems

• Old version can be re-executed: But only with current job definition

• Job definition still in Jenkins

• What if breaking changes are introduced
• Eg: python ./script.py --param ${…} --newparam ${…}
• Or a new script is invoked

  Job needs an update

  Cannot run old versions anymore (incompatibility introduced)

• What about execution environment ? (eg: migrate from python 2.7 to python 3.6)

© All rights reserved

User Conference on

Advanced Automated Testing

Jenkins Blue Ocean
A new way to write pipeline

© All rights reserved

What is Blue Ocean
• A Jenkins plugin

• Appeared in 2016 – Still in early stage

• Rethinks user experience
• New UI (classical UI still available)

• New syntax: The whole job is a script

• Pipeline graphical editor

• Designed for pipelines
• Sophisticated pipeline visualization

• Pinpoint precision

• CI / CD as code

• Modular with shared pipeline libraries

• First class integration with Docker

© All rights reserved

User Conference on

Advanced Automated Testing

© All rights reserved

User Conference on

Advanced Automated Testing

© All rights reserved

User Conference on

Advanced Automated Testing

Classical Jenkins UI is also updated

Pipeline as code

• With blue ocean, Job/Pipeline
definition is also stored in SCM

• Pipeline can run in a
dedicated Docker container

• Each Git branch will
automatically have its own job

© All rights reserved

User Conference on

Advanced Automated Testing

Jenkins

GIT
1. Submit

change

2. Trigger job

3. Download and

run changes

4. Provide feedback

Slave
Slave

Slave

Jenkins Blue Ocean
Creating a pipeline

© All rights reserved

Setting up the pipeline

• Install blueocean plugin

• Create a new job

• Choose type of job

• Pipeline

• Multibranch Pipeline

• Let’s choose Multibranch Pipeline

© All rights reserved

User Conference on

Advanced Automated Testing

Setting up the pipeline

• Setup source SCM with branch discovery

• Setup branch scanning

• Set path to pipeline file

• Prepare your Jenkinsfile

• Commit and push it to SCM

© All rights reserved

User Conference on

Advanced Automated Testing

Jenkinsfile is the default name

The Jenkinsfile

• A text file

• Checked into SCM

• Declarative pipeline syntax

• DSL base on Groovy language

• Structure documented at https://jenkins.io/doc/book/pipeline/syntax/

• A single source of truth for the pipeline
• Can be viewed and edited by multiple members of the project

© All rights reserved

User Conference on

Advanced Automated Testing

https://jenkins.io/doc/book/pipeline/syntax/

Anatomy of a pipeline

© All rights reserved

User Conference on

Advanced Automated Testing

Structure of a jenkinsfile

• A Jenkinsfile has 6 main sections

• Agent : Specifies where the entire pipeline
will run

• Options : Global options

• Parameters: Input parameters

• Environment : Global environment variables

• Stages : Sequence of stage definitions

• Post : Steps to be run at the end of pipeline

© All rights reserved

User Conference on

Advanced Automated Testing

pipeline {

agent {/*...*/}

options {

timeout(time: 1, unit: 'HOURS')

retry(3)

}

parameters {

 string(name: 'MY_JOB_PARAMETER’,
 defaultValue: '<NONE>’,
 description: 'Job parameter’
)

}

environment {

 MY_ENV_VARIABLE = "foobar"

}

stages {/*...*/}

post {/*...*/}

}

Agent

• Defines where to run the pipeline

• In any slave

• In a slave with a given label

• In docker container

• Either from an image

• Or built from a Dockerfile

• Docker makes managing running
environments a piece of cake

© All rights reserved

User Conference on

Advanced Automated Testing

agent any

agent {

 label "slave-with-python2.7"

}

agent {

docker {

 image: "python:2.7"

}

}

agent {dockerfile true}

Post

• Perform steps at end of pipeline
• Archive artifacts
• Publish result
• Send an email
• Etc …

• Actions can be conditionned by pipeline status
• Always
• Changed
• Fixed
• Regression

© All rights reserved

User Conference on

Advanced Automated Testing

post {

always {

 archive "build/*.exe"

 deleteDir()

}

failure {

 echo "Failure"

}

success {

 echo "Success"

}

unstable {

 echo "Unstable"

}

}

• Aborted

• Failure

• Success

• Unstable

• Cleanup

Stages

• Each stage has either
• A sequence of steps

• A list of parallel stages

• Can have conditional switch

• Can have their own environment
variables

• Can have their own agent

© All rights reserved

User Conference on

Advanced Automated Testing

stages {

stage("Stage-1") {

steps {

echo "Welcome in stage 1"

sh "python script.py"

sh “./script.sh"
}

}

stage('Stage-2') {

when {

 branch "master"

}

environment {

 MY_VARIABLE = "My-Value"

}

parallel {

stage("Sub-stage-1") {

steps {

 echo "sub stage 1"

}

}

stage("Sub-stage-2") {

steps {

 echo "sub stage 2"

}

}

}

}

}

Steps

• A step is a single action

• Jenkins plugins come with their own
steps

• Run sequentially in a stage

• Each step has its log output

• Full list available at
https://jenkins.io/doc/pipeline/steps/

© All rights reserved

User Conference on

Advanced Automated Testing

steps {

 addBadge icon: 'computer.png', text: env.NODE_NAME

echo "Welcome in stage 1"

sh "python script.py"

sh "./script.sh"

zip zipFile: "compressed.zip", dir: "."

}

post {

always {

junit "build/testresults.xml"

checkstyle pattern: 'build/checkstyle.xml'

cobertura coberturaReportFile: 'build/coverage.xml'

sloccountPublish pattern: 'build/sloccount.scc'

archive "build/*.exe,build/*.rpm"

deleteDir() // Delete workspace

}

}

https://jenkins.io/doc/pipeline/steps/

© All rights reserved

User Conference on

Advanced Automated Testing

stages {

stage("Stage-1") {

steps {

echo "Welcome in stage 1"

sh "python script.py"

sh “./script.sh“
zip zipFile: "compressed.zip", dir: "."

}

}

stage('Stage-2') {

when {

 branch "master"

}

environment {

 MY_VARIABLE = "My-Value"

}

parallel {

stage("Sub-stage-1") {

steps {

 echo "sub stage 1"

}

}

stage("Sub-stage-2") {

steps {

 echo "sub stage 2"

}

}

}

}

}

Pipeline editor

• Graphical tool

• Edit Jenkinsfile

• Makes it less
difficult

• Not as powerfull
as text edition
(yet?)

© All rights reserved

User Conference on

Advanced Automated Testing

Jenkins Blue Ocean
Advanced scripting

© All rights reserved

The script step

• Takes a block of groovy script

• Mostly an “escape hatch”

• Has access to Jenkins’ internal functions

• Has access to Java/Groovy standard library

• Run in a sandbox

• Big scripts should go into a shared library

© All rights reserved

User Conference on

Advanced Automated Testing

steps {

script {

for (i in 0..10) {

 echo "${i}"

}

}

}

Example
• Extract JIRA task ID from change’s

comment

• Display the link in jenkins’s job history

© All rights reserved

User Conference on

Advanced Automated Testing

Example

© All rights reserved

User Conference on

Advanced Automated Testing

script {

def issues = currentBuild.changeSets

.collect { c -> c.getItems() }.flatten() // Build a single list with all changesets

.collect{ c -> c.getMsg() } // Transform the list into a list of commit message

.collect { msg -> msg.split(':')[0].split(',').collect { it.trim() } } // Extract issues id from

each commit message

.flatten() // Merge into a single list

.findAll { task -> task ==~ /TASK-[0-9]+/ } // Keep only valid issue names

.unique() // Remove duplicates

currentBuild.description = issues

 .collect { "${it}" }

 .join(", ")

}

Don’t repeat yourself
Introduction to shared
pipeline libraries

© All rights reserved

Shared pipeline librarie

• Store subset of pipeline code in separate SCM repository

• Share this code between multiple projects

• Create custom steps

• Avoid script sandbox restriction (a shared library is trusted)

• Imported in Jenkinsfile by
• EG:
• Version can be the branch name, a tag, or a revision ID

• Check documentation at https://jenkins.io/doc/book/pipeline/shared-
libraries/

© All rights reserved

User Conference on

Advanced Automated Testing

@Library(“libraryname@v
") _

@Library("pipeline-common-lib@2.6.1") _

https://jenkins.io/doc/book/pipeline/shared-libraries/
https://jenkins.io/doc/book/pipeline/shared-libraries/
https://jenkins.io/doc/book/pipeline/shared-libraries/

Why

• Jenkinsfile gets bigger and bigger

• Some parts are common to many projects

• Implements complex steps

• Import and use java libraries

• DRY (Don’t Repeat Yourself)

© All rights reserved

User Conference on

Advanced Automated Testing

Let’s refactor the JIRA link script

• Create a new GIT repository which will hold the library code

• Create a file ./vars/linkToJira.groovy with the following content

© All rights reserved

User Conference on

Advanced Automated Testing

def call(prefix, baseUrl) {

def issues = currentBuild.changeSets

.collect { c -> c.getItems() }.flatten() // Build a single list with all changesets

.collect{ c -> c.getMsg() } // Transform the list into a list of commit message

.collect { msg -> msg.split(':')[0].split(',').collect { it.trim() } } // Extract issues id from each commit

message

.flatten() // Merge into a single list

.findAll { task -> task ==~ /${prefix}-[0-9]+/ } // Keep only valid issue names

.unique() // Remove duplicates

currentBuild.description = issues.collect { "${it}" }

 .join(", ")

}

Let’s refactor our
JIRA script

• Update Jenkins system config

• Add a Global Pipeline Library

• Name your library

• Setup the GIT repos

© All rights reserved

User Conference on

Advanced Automated Testing

Let’s refactor our JIRA script

• Update the calling Jenkinsfile

• Load the library on the first line of Jenkinsfile

• Call the linkToJira step somewhere in a stage’s steps block

© All rights reserved

User Conference on

Advanced Automated Testing

@Library("pipeline-common-lib@master") _

steps {

linkToJira "TASK", "https://your-jira.server.com/browse"

}

Version your lib

• Avoid importing the master branch of a library

• Add versioning to it with a git tag with

 And import it

• Or directly import a git revision

© All rights reserved

User Conference on

Advanced Automated Testing

@Library("pipeline-common-lib@6.2.3") _

git tag 6.2.3 && git push

@Library("pipeline-common-lib@8e5ff7ffceb5e6f758def92c7ddf40a5fe87005f") _

Conclusion

© All rights reserved

Why using Blue Ocean
• Enable good practices

• Keep your whole pipeline in an SCM (eg: GIT)
• Stored alongside with testing scripts and / or tested code

• Can be passed through the code review process

• Track changes

• Development made easier

• Branches can be forked easily

• Old versions can easily be relaunched

• Easy use of docker

• Share and reuse common parts accross projects

• Flexibility

• Understandability

© All rights reserved

User Conference on

Advanced Automated Testing

Why not

• The learning curve

• Blue ocean is still under heavy development

• Groovy language

• The cost of rewriting existing freestyle jobs

• Still hard for now to test Jenkinsfile without having to submit it

© All rights reserved

User Conference on

Advanced Automated Testing

QUESTIONS ?

© All rights reserved

User Conference on

Advanced Automated Testing

Backup slides

© All rights reserved

User Conference on

Advanced Automated Testing

Review workflow

• Fork master branch into a new one

• Make your changes and commit / push
them

© All rights reserved

User Conference on

Advanced Automated Testing

• New Job is automatically created
and run

Review workflow

• You can ask for a peer to review
your changes

• Pull Request (Github)

• Merge Request (Gitlab)

• Working with Gerrit also possible

© All rights reserved

User Conference on

Advanced Automated Testing

